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IDENTIFICATION OF SMALL INHOMOGENEITIES OF EXTREME R
CONDUCTIVITY BY BOUNDARY MEASUREMENTS: "8
A CONTINUOUS DEPENDENCE RESULT N
v
“
(]
. AVNER FRIEDMAN{ aANp MICHAEL VOGELIUS}
s
.
. ”
Abstract. We consider an electrostatic problem for a conductor consisting of finitely many small {
inhomogeneities of extreme conductivity, embedded in a spatially varying reference medium. Firstly we :
establish an asymptotic forinula for the voltage potential in terms of the reference voltage potential, the
location of the inhomogeneities and their geometry . Secondly we use this representation formula to prove
a Lipschitz continuous dependence estimate for the corresponding inverse problem. This estimate bounds 3
the difference in the location and in the relative size of two sets of inhomegeneities by the difference in the 9
boundary voltage potentials corresponding to a fixed current distribution. !
v

41 Introduction and statement of the main result. The determination of con-
ductivity profiles from knowledge of boundary currents and voltages has recently received

a a lot of attention in the literature. In the biomedical community a common name appears g
g to have emerged for such work: electrical impedance tmaging [6]. It is usually assumed y
: that the (direet current) voltage potential u satisfies the differential equation '
\J
X V. (y(z)Vu) =0 in Q, QCR",n>2 :
LY ;
o where q(r) is the positive, real valued conductivity, to be determined. The extra informa- .
‘ tion, based upon which it is sought to determine y(x), consists of knowledge of currents
; :
Ju . . )
N 15 and the corresponding voltage potentials u at the boundary, 9. K
1y )
»
Let A, denote the linear operator from H'/2(9Q) into H ~1/2(9) which takes Dirichlet- 4
' to Neumann-data: 4
:' Jdu . |
Q Ad)=7—with V- (7Vu) =0 in Q,u= $on N . !
» 01/ .
. ~ . . . . .
. Complete knowledge of A, is known to determine the function 4 uniquely under quite "
¥ . . v . . . . .
general assumptions: This was verified for analytic and piecewise analytic v in [11] and
. [12]. for & 5 and dimension > 3 in [18], and under the assumption that 4 be sufficiently
N close to a constant 1t was verified for C™ v and dimension n = 2 in [17]. For a laycred
> conductor, r.e., ¥ = 7(x), two sets of Dirichlet- and Neumann-data suffice to determine
. even a bounded measurable g (ef. [13]).
’ tostitute for Mathematics and its Applications, University of Minnesota, Minneapolis Minnesota 55165
W IDepartment of Mathematics, University of Maryland, College Park, Maryland 20742
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Beeause of inevitable error in measurements, it is at least as important to study the
continiity of the dependence of 4 on A, as it is to verify uniqueness. Alessandrini [2]
has recently examined this question for n > 3 and shown that the mapping A, — v has
a modulus of contimmity of logarithmic type, provided 4 is a priori known to helong to
a bounded set in some Sobolev space; his proof exploits the continuity of the mappings
A, = ylog and Ay = 97/9v|aq established in [19]. The assertion of Alessandrini is, more
specifically, that if A, and A, deviate by é (in the operator norm on B(H/? H~'/?))
then 4, and v, deviate at most by C (log %)"" (in L*°(Q)) for some 0 < 0 < 1. While such
a result is theoretically very interesting, it is at the same time somewhat disappointing,
since it predicts quite a weak form of continuous dependence. It does not explain the
apparent practical success of various numerical algorithms to recover v from only partial
knowledge of A, (cf. [4], [14], [20] and [21]). To bridge the gap it seems relevant to analyze
the continuous dependence for interesting classes of conductivities, where the functional
dependence on w is further restricted; one example of such analysis is found in [5], [9]. It is
of practical importance to seck continuous dependence estimates in terms of only finitely
many scts of Dirichlet- and Neumann- data.

In this paper we consider conductivities that correspond to a finite number of small in-
homogeneities, with extreme conductivity, imbeded in an n—dimensional reference medium.

The reference conductivity y(x) satisfies
(1.1) 0<CQS’)(1?)SC’()<OO.

We assume that each inhomogeneity has the form z; + epp B where B 1s some bounded

domain in R with
(1.2) 0 € Band 9B of type C**? _ for some 0 < 3 < 1
The points {zx} 12, belong to Q and satisfy:

|2k —z; | 2do >0 , Vj#k, and

(1.3)
dist (:0,0Q) > dy >0 , Vk.

The parameter € determines the common length scale of the inhomogeneities, and the py .
(1.1) do < prx < Do ,

determine their relative size. We always assume that e is small enough that the sets

c.. T . a
2k # 2epx B ave disjoint and that their distance to R"\(2 is larger than 70 .

-

et

N
we = U(:k + epy B)

k=1
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denote the total collection of inhomogeneities. If they all have infinite conductivity. then

the voltage potential u, = u® , given the boundary current v, is the solution to

. 1
(1.5) min — 7| Vu |fZ dr — | Yduds
wu€ (), Vu=0in w,
) a0

(8]

If all the inhomogeneities have conductivity 0, then the voltage potential u, = u? solves

1
(1.6) min = / | Vu|?dr — /tjruds
w€H (2\w,) | 2
Q\u.', ()Q
We assume that
(1.7) Q2 is bounded with 9Q € C*+7 |

REMARK 1.1. For problems (1.5), (1.6) to have a solution it is necessary and sufficient
that v € H~'2(0Q) with

(1.8) /Ws _o.
1319

We shall make the solution v = u, of (1.5), or (1.6), unique by requiring that
(1.9) /u(dszo.
an

The solutions v and «! may be obtained as limits from an clectrostatic problem involving
finite and nonzero conductivity: Let v4 = ylg\e, + alu,,a > 0, and denote by ug the

solution of

1
. 2
min - Vu dx — vuds
welll() | 2 /%l | /d
a0

L]
§ -,
r <
Then .
(o SRR ,, @ 0 _ 1 @ -
(1.11) u® = lim u and u] = lim u | 0 _.
a— 00 a—0 U A
N,
the first imit is relative to H'(Q), the second relative to H'(Q\w,). i 1.4
In most. of this paper we shall focus our attention on the problem with inhomogeneities
of infinite conductivity; the case of zero conductivity is very similar and is treated briefly " I
in the final section. Averncuana.y Codes ]
. jAvail ans/or -
! ! 1 -3
3 ;Dist. i Specia .
| :
~

I I A S
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We shall heneeforth write w, instead of ©™. Our main tool of analysis is to express u,

/ | Vu |* - /d’uds ;

(2191

in terms of U the solation of

[V AR

(1.12) 111n
w€ (1)

[ is the voltage potential corresponding to the reference medium alone, and it is normalized

o d AR K N A BT w W W SRR e T e AR T

Ly

(1.13) /U(I.S::O
a0

We assume that

(1.11) v € C**(Q),

and that the following non-degencracy condition holds:
(1.15) VU(x)#0 Ve e Q.

In practice this means that we can choose any 4-harmonic function U, with VU(a) # 0 in
2. and then apply the boundary current ¢ = y0U /v on OS2,

Consider two arbitrary collections of inhomogencities

N

We = U(:k + epr B) and w = U(z'k +epiB)
k=1 k=

both satisfying (1.3), (1.4) and denote by u, and u} the corresponding voltage potentials

(withs fixed houndary current, ). Our main result is the following continuous dependence

thicoren:

."(.f,f,' = x

£y

Turoreas 1.1. Let T he a given nonempty open subset of 9. There exist constants
- €y, by and C and a function p(e) . lim n(e) = 0, such that if € < ¢y and
¢—0

,*H

oo —u - Sy < b then

PALANT OIS

(1) K = L', and, after appropriate reordering,

AL

(i) {-'fk — ~lk( + l/’k — /’Ik[

Ly

[
£
b 3

>

2

e, = il g~y + nle) (1<Ek< L)Y,

e
-

3N
= e

.,
a
a

P
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The constants €4,y and C and the function 3 depend on dy, Dy T.Q,~y and 3 but are -
- . . . - 1\
otherwise mdependent of the two sets of inhomogencities,
-~
)
? !
: The factor €™ in front of ||u, — u}|| < (r) is best possible; it follows immediately from h
{ onr analysis (¢f. Lemma 3.3) that even if |zp — 21| and |pg — p}] is of order 1 then the o
. . M J
discrepancy in the boundary data is of order €". For fixed (and small) € our theorem y
- hasically shows that the locations of the inhomogeneities, =i, and their relative sizes, pa,
. . . 0 . — '
1 depend Lipschitz-continuously on the rescaled boundary deviation €7 |Jue — u}| oo (r)- ”
’
p . .. "
4 In the formulation of the theorem we used the L™ norin of (u, — u})|r ; this is not R
. . - . . >
essential, in fact the analysis in Section 4 shows that other norms can be used, such as the ko'
L' norm. k
A brief outline of this paper is as follows. Theorem 1.1 is proved in section 4. The "}
proof 1s based on an asymptotic representation formula for u,, as derived in section 3. To :
establish tlis representation formula we require some energy estimates of U ~ u,; these
estinates are found in section 2. h
4
REMARK 1.2, Recently Friedman [8] has shown that the presence of an inhomogencity ]
. . . . "-
or a collection of inhomogeneities can be detected by boundary measurement of the voltage d
potential (on T') corresponding to a single current distribution. For the case of small .
L g
. L. .. o
inhomogencities of extreme conductivity Theorem 1.1 goes much further. It shows that -~
the exact locations and the relative sizes are determined, in a continuous fashion, by the 2—-_
-
sane measarement. ‘-':-
\:‘
REMARK 1.3. Theoremn 1.1 can be extended to the case where each inhomogeneity is >
of the form =y + epp By and By are different. fixed domains with smooth boundaries. ~
42 Energy estimates. In this section we estimate the difference between u, and the ::
reference potential UL The first result concerns the H'(Q)-normi of U7 — u,. )
=3
' Luntma 2,10 There exists a constant C such that ~
)
-8
CO(L 2 . 2 < o2 :
GV —u ) P+ U —u, 1) dr S C €™ [[V]i5-1/2050) - &
. hod
Q Al
e
l.,.
. w
Proof. Since
)
-
2 ' 2 : 2 o
/!1, (/.1'§C(/:\_1'i' (h‘-,—{/z‘d;‘,’) g
. . Y
§2 Q o 3
ot
. ’
and [ (17 = wu,) ds =0, it suffices 1o prove that )
) b
.
n‘\
N
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(1) / |V =) [P dr < C €¥5-1200
Q

Set.

L

) o

L4

‘\

%

"‘ = {UCHI(Q) M v'l’ —_ 0 in W, /1’d3 —_ U} .

a0

From the definitions of v, U we get

(2.2) /‘;Vu( Vw dr = /uivu» ds = /VU -Vw dx
Q

Q anN

l'. .I' ‘( l.{ ‘.

‘- l'
vy N

whichi implies that u, is the projection of U onto the space V. Therefore

rEE®

W

(2.3) /7 | V(U ~u,)|* dr = Iléi\l_] /') | V(U —v) |* dz.

Q1 Q

o LEAY

«
.

4
T

.
]
.
g

P

Since 5 is bounded from above and away from 0, it suffices to show that there exists a

v, € 1, such that

(2.4) / | V(U =) |* dr < Cfn||’v"||2n—1/?(am :
0

3 4 B _s 8 ¥
SR R e
a » a

e @

o % %y " ¢

Consider first the case of one inhomogeneity (with z =0 and p = 1). Let

1 .
C(:W /ld.l.

2el3

A resealing of the Poincard inequality (on 2B) gives that

(2.5) / U —¢. |* de <C € / |SU | dr.

23 2¢B

(2.6) w,(z):o(%)c,+(1—o(‘?))lﬂ

where o is o C cutoff function:

- 1 for j/EB
(2.7) oly) =

0 for v € R"\2D .
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Clearly

1
vooow, /ll', s
| ]

Y

i~ au clement of Voo From (2,60, (2.7) it follows that

/ | S — e ) | de = / | (U = e )
2 Q
< / | VU |2 dr + / | V(U —we) |* de,

3 2e B\ 3

and thus, using (2.5), (2.6). we get

(2.8) /IV(C'—I',)Iz dr <£C / | VU |*
Q

20 3

By elliptic estunates

[T R e < B2 U < O elovrzomy
23
and 1 combination with (2.8) this proves (2.4).
So far we have considered one inhomogeneity. In the case of Ik inhomogeneities the
result follows from the previous proof and a localization argument.
Lemma 2.1 asserts that [|[U — || 1) = 0(e"/?); from the trace theorem it therefore
follows that | — u, || 12000, = 0(e"/*). This however is not the best possible estimate,
in faet we have:

LEMMA 2.2 There exisis a constant C such that

U = u ey € Ce{L+ 1G22 00 -

Proof. Let W oand w, be solutions to the same minimization problems as U and «,.

just with ¢ replaced by v From the Schwarz inequality and Lemma 2.1 we get that

(2.9) 1 /:.v(n' e )N =) da VS Cer el m e o, + 1R nn)) -

Since w, € 1,00t follows from (2.2) that

(2.10) /‘,VU', N —uYydr=0.
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Integration by parts vields ::'.
N

(2.11) /Wu'-vw—u,) dr = /(U—u()cfv ds . ;~
0 aQ &

stnee V(4 V) = 0in © and 7%2 = ¢ on ). A combination of (2.9), (2.10) and (2.11)
1/

gIves

TENNY

L

f N2
|‘v’”21)1—1/?(()9) + ”‘#/'”11—1/2(9(2)) ,

] /(l' —u ) de |< Ce’(
79
and thus by taking the maxinnun over ¢ subject to [l g=1/2(ag) < 1 and [ vds =00 we
I21Y]
get the assertion of the leimma. [
REMARK 2.1, The estimate in Lemma 2.2 follows directly from the representation
fornmla for «, which we shall derive in the next section. Indeed, it follows that U7 — wu, is
of order €, near 92, in the €'+~ norm, 0 < B’ < B; however the present proof is simpler

and we have included it for completeness.

3 A representation formula. We now proceed to find an asymptotic expression for

u,. This expression will involve the functions ®;  (J = 1,...,n) which solve the exterior ::
problems l-
Ad; =0 in R"\D , <

\‘
2

(3.1) ¢, =—y; on 0B , o
3. &
@ is uniformly bounded in R"\B and }:

Slad

fn>3: ®;(y) >0 as |y|—o0;

‘\. 'ﬁ

such @, exist and are unique, [15]. For n > 3 we shall also need the function o, which

a0

satisties

.

e

Aé=0 inR"\D,
(3.2) =1 on B,
oly) — 0 as |yl — o0

'r "y 1
-

o or a_v.e
P

5 5"

8 ¥

v
AN

The following lemma is well known, and is only stated here for the convenience of the

. 1
l‘(‘ill[(‘l'. :_::
'-:\
Lissa 3.1, Let O(y) be a uniformly bounded harmonic function in R"\B. If n > 3. X
assunie that O(y) — 0 as |y |— oc. Then there exists some constant ¢ such that \'\
2—n 1—n [
Ply)y=c |y 77" +0(Jy ') and =
. \l.
Ty = Ve |y 00 1T as [yl . N

s
Ay
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Briefly the lemma follows by considering the Kelvin transform

I

Pyt = P |—'|_

y' near 0,

Rl A Y Y

"
and noting that the singularity of @ at y' = 0 is removable since A
o (log ifn=2

'y') = '] " 2
(ly'12—™) ifn>3. )

From Lemma 3.1 it follows that ;—
O‘I’j O(I’,' N ‘
/ (P, By - &; 5 yds = 0 as R — oo, E

{lul=1t} N

D . bl

and Green's formula therefore yvields ;.
¢

09, 0d; by

3.3 ¢ Lds= [ &, — ds. .
(3:3) / " ov 7 v o
a3 aB &

P

Similarly, '
.

s

9 / 0%, f 0d; -
3.4 — y; ds = — — ds=— | — ds, n>3. .
(34) o ¢ Jv ° / v - s
an o8 o8B <

Notice, by the maxinum principle, that 0 < ¢ < 1 in R"\B and ‘

o
04 2

(3.5) —-— >0 ondB A
v .
(17 1s the outward normal relative to B). ::.
. C oy . -,

We now prove two crucial estimates, needed for establishing the representation formula. -
LiMMA 3.2, For anv o € H™Y2(0Q) there exists a constant C such that ’

i

Ou N

(3.6) ‘ N ds < Ce™ ', and .
| Ov ~

ute by
~3
oS5
8

'y - 0“' ‘ s n 7T n *
(3.7) “;W(.r—:k) dsp = (epr)"3(z1)AVU (1) + o(€™) )
J(:A.‘}.'t,:‘, 1) Py
.

9 v
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for 1 <k < K. uniformly in {z;} and {pr}. A = (a,;) is the symuetric positive defiuite

atrix \\'Hh Cltries

Db
ay | B8, /I(T)Tl

([s

0(6 .)—l O(P, O(I)

o v ov
an O3 B

where 1/ s the outward normal relative to B and 6, =0 ifn =2, 6, =1 ifn > 3.

Proof. The fact that A is symmetrie follows from (3.3). To verify that A is positive
definite we compute

A 0
Z(l.jiéf; =| B | | €12 —»/,\51\7 ds

aB
" do N :
8, — ds ;
Toal [ 5, 47 ( % )
RYe aB
with \ = > &,®,. and note that
0 2
»_/ \7_‘(/.-: / VAP dy>0 (0 =2), and
O
an R2\ /3
N\ N 0¢
Y NCAYS N s
/ \ ] gy A gnds)™!
an an 0B
= / | S5 dy — / TAVe dy)? ( / | Vo l|? dy)y™' >0 (n>3).
R\ 13 R\ B R\ B

throngh mtegration by parts and use of Lemmna 3.1.

To prove (3.6) and (3.7) consider first the case in which there is only one inhomogeneity,
with 2 == 0 aud p = 1:w, = eB. Let d be a fixed positive number (chosen sufficiently
small). Without loss of generality we may assume that

i
(3.9) Bl < Sy {lrl <2} Cn.
ot \. he the solution to

V-3 Va) =0 in {Jr] < d}\eB ,
v =1 ond(eB) andy, =0 on {]o] =d}.
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\
H
)
!
’
L)
) Set.
! ce=u.n (a constant) ,
b and introduce the functions
3 (3.10) Vi(e) = () = \o(0) (e = U(0)), & € {|o] < dN\eD |
)

and v U /

o = LT ey < Sy,
€

On 0D:

)
3 U0) = Uler € .
; Wy) =()—6(—!‘)‘ =-VU(0) -y -3 Y DU )yiy;
s (3.11)
— =VU(0) -y ase—0,
! ,
R uniformly in €', for any 0 < 8’ < 8. On |y| = d/e:
)
: Wily) = ue(ey) — Uley) _ ue(z) — U(z) "
€ €
with r = ey, || = d. By Lenuna 2.1
w U U
/ (D= Lpyar <2
D € €
{4 <|r|<2d)
p
b Since U
* vow =0 i el <d/).
€

we can apply elliptic estimates to deduce that

: (3.12) max ELM < C'eg;_2
jrl=d €
Therefore
, n=2 d

(3.13) | W(y)|< Ce on |y|=;,

and at the same time ¥, solves
; . . ) d. . —
| (3.14) Vo (en)VW(y)) =0 in{lyl< :}\B
{
i 11
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The rvesult in this lemma differs slightly depending on whether 10 = 2 or n > 3. We
turn first to the case n = 2. From (3.11), (3.13) and (3.14) we obtain, using the maxinnun
principle, that TV, (y) is bounded in {] y |[< R}\B uniformly in R and ¢, provided IR < d/e.
By clliptic estimates and a compactness argument we deduce that W, — Wy as e — 0,

where TWy( 1) is the solution of
AWy =0 in R%\DB,

”'U = —v(J(U) Yy o on OB .
Wy is bounded in RQ\B :

the convergence is in C*+' ({(y| < R}\B) for any 0 < 3’ < 3. In particular

oW, oI,

(3.15) Y — E»

= my uniformly on 0B .

Recalling the definition of 1V, we get

av, gl T
A mo(?) — 0 on J(eB);

(3.16)

here v has been used simultancously to denote a smooth unit normal field v(x) on d(eD3)
as well as its counterpart, r(ey), on 8. From (3.16) we immediately get, upon inserting
(3.10),

du, i v,

J3.17 r) -
(3.10) O ' Jv

(2)(ce = U(0)) = VU(0) - v(x) — mo(%) -0

h Y

untformly on d(eB) as € — 0. It is easy to sce that o
Ou ds = 0 }l-*
7 al/ S = ’ :"-
a(eB) .
and (3.17) therefore yields o
]
e, —U(0 O« oy
(3.18) —f(l 0% 0\ ds + v(0) / mo(y)ds — 0 :":
3 1 24 -
a(eB) 4B >
N
as e -+ ). But oW '."'
/NI()(U)(].S = 1}2}; / 01/0 ds=0 'PE
an {lyl=R) o
as a consequence of the second identity in Lemma 3.1, so (3.18) gives ::
e
~
= U(0 N, ’
(3.19) ‘ ) \ ds — 0 as e — 0. :
€ dv .
aeld) K
~
9 b
= N

A “,

) T N O S S L A R T S S N A R g R S R N O A N R R N L S L S SN Y Lo
LS .‘.lh.l N X .. l“, R NS o . . N . L& A . o ~ Cl L) - » -
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The maximum principle shows that dy./dv has constant sign on d(eB), i.e., (3.19) may
be written

(3.20) Le =UO] / la\‘ ds —0 ase—0.
€ Jv

M)

In conjunction with (3.17) this gives

~1— / %t—‘dssc,

€ 124
a(eB)

which is exactly the assertion (3.6).
In terms of the solutions @ of (3.1),

Wo =Y U (0)%,,

and thus
(3.21) mU:ZU (O)QQ- on 0B .
£ ov ’

A combination of (3.17), (3.20) and (3.21) yields

1 . Y
(3.22) = / L9 s, ¥(0)U+, (0) /(ujy+ 0%, ) dsy = 7(0)AVU(0) ,

" Qv

a(B) EY:]

v

€

where 4 = (a;;) is the matrix with

od ;
aij = /(VﬂJi + a—VJ y:) dsy
B

=IB|6,]—/¢00(I)]dS

aB

and (3.7), (3.8) follows.

We now turn to the case n > 3. The function
2-n
m(y)=m(r)=r7 ,r=|y|
satisfies
. m'

(4ley)Vin(y)) < vey)(n" + ”; ') = (V)| )d —

d
<0 if ly < =
€

A .'b. ." ".v y !\‘2‘!‘!"'- g -Nk.Jnl. “'u AR
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provided d is sufficiently small. Using (3.11). (3.12) and (3.14), we may compare 1V, with -

"

C'in(y) for some positive constant C (independent of €) and conclude that

>
d g
(3.23) W) 1< Cly |5 forye{lyl<s - N\B. .
3
. ‘. ¥
Therefore T, converges muniformly on compact sets towards Wy, the unique solution of Y
AWy =0 in R"\B, E
(3.24) Wo=-VU(0)-y ondB, ".x
Wy(y) >0 as|y|— co. N
)
. Y
The statements (3.15), (3.16) and (3.17) remain valid and, as before, \ .‘
)
ce — U0 0\.E o,
ﬁT)' / U ds — —~(0) /mg(y f.
o€ .
(3.25) e O(I) %
— ] r(
= —(0) Y _Us,(0) [ —2 ds; 5
aoB o
only now the right-hand side is in general # 0. (L &, =¢; |y 127" + O (J y I'™") as )
|y |— ooone > 3, then [ (0®;)/0v = 0 if and only if ¢; = 0). The function dx/dv has ‘_'-:
an WY
a fixed sign on 9(eB), and by combining (3.25) with (3.17) we deduce that the assertion )‘
{3.6) holds. R
From (3.17) we obtain a relation similar to (3.22) with the additional term L
T 1) ;::
€ 0 »
J = lim e = U(0) / ) Xe zds, ':'_t
AT e o
a(fn) .;

appearing on the right-hand side. Using the barrier Cm(y) we see that the functions x(ey)
- d . oy
are all majorized by Cm(y) on {| y | < = }\B. Thus x(ey) — ¢(y) uniformly with its
€
first derivatives in {| y |< R}\DB, for any R > 0. Combining this fact with (3.23), we get

P Dol o S

OQJ 0(,’) Od) -1 ~

_7(())(er1_j(0)/ o (13)/y5,7 dsy(/ads) . :
aB aB aB r: 3

Y

-

The fornmla (3.8) follows by use of (3.4) in the above expression for .J.

We hiave thus completed the proof of Lemma 3.2 in case of one inhomogeneity, with ::

~

< 0.p - 1ia simple rescaling and a translation gives the result for the general case of one

14
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mhomogeneity. If there are more than cne inhomogeneity, then we can apply the previous
argument to the inhomogeneities one at a time, provided we verify that

(3.26) / 7% ds =0

for cach 1 <k < K. To prove (3.26) we return to the ul defined in the introduction; it
is clear that (3.26) holds for all ©&, and since u, = lm u? (in H'(Q)) the same identity
holds for we. [ e
Let N (-, y) denote the Newmann function in § corresponding to +, i.e., the solution of
—V-(#VN)=46, inQ,
ON 1
Tou T T Taq]

/NdszO;
a0

v denotes the outward normal to 9. If y € Q\w, then

with

N
wu(y) = —/u(v -(YVN)dz = ——/ 60— ds
Q [44Y]
{3.27)

Ou€ Ju,

— N ds + —_—
Tou T ov I ds.

Sw, N

Since 7(IN/Jv) is constant on 9Q and f u, ds = 0, it follows that f uey(ON/Ov) ds = 0.
Combining this and the identity 7(0&(/01/) =1 on 9N with (3. "7) we get

Ou
(3.28) u(y) = /'y——- N ds + /d)Nds
Owe
Note that v denotes the outward normal relative to w,, The first term on the right-hand
side of (3.28) may be written as

N

(3.29) - Z / 7801:/( N ds
K=V e 4 epe 1)

R
Ou, OJu
= — E \T Zh _ S — C — Ik S
k:IJ ( k U) / al/ (1 7\( ) / ‘Yau (.T k)d I

Mz +epe B) I zk+epr B)
. 0”
+0(e? / ~,|0( | ds) .
17
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We already know that

Ju, hS
/ ‘/ ; (I.\' () . Ll
O

H(:A- ’l'il ”)

Using, Lemma 3.2 and (3.28), (3.29) we thercfore get:

Leamsa 3.3, There holds:

u(y) = =" pi(z) VN (zk,y) - AVU ()

(3.30) -

* /LI‘(T)AV(I» y) ds, + €"nle, y, {/)k}- {:k}) )
a2

where the matrix A = («,;) is given by (3.8) and n(e, y, {px}, {zx}) as well as Vyn(e, v, {pi}. {2t })
converges to zero, as € approaches zero, uniformly with respect to y € Q, {pi} and {z},
provided dist (g, {zx}) > d > 0.

Note that

A @

.

/d'(I)N(.r,y) ds, =Uly) .

o9

v;-)%

/,

In general the matrix 4 cannot be computed explicitly. One exception is the case when
B is the unit ball. In that case @; = —y;/ |y |" and (for n > 3) ¢ =[y [*7™. A simple
computation gives A = w, I, where I is the identity matrix and w, = meas {|y |= 1}.

f o5 5
DAY

N

i

.
>
[y}

84 Continucus dependence. The Neumann function, introduced earlier is symmet-

%r‘:.:

ric in its arguments in
(82 x Q) \ diag (2 x Q). It furtheriore has thie form

1] l".

)
P

.

‘e"a"™
LA
[}

N(iz,y)=N(y,z) =~

log |y—z2|+R(y,z ifn=2 y
Sy () 08 | | +R(y,2)
1 l l?—n +R( ) f >3 '(‘:
= |y -z (y, 2 fn>3.
(n = Dwny(z) Y Yor e

[

(1.1)

where Ry, 2) solves e

1 Valy)-(y — z .
N 1 Wy) (y—2z) 1y
B2 = =107 * S Jy—z P

@

{4.2)

B
“

J
()7

o0 ;
0”y ve

oA
-~ N

f? is not symimetric in its arguuents. Since the function

pLags

Vy(y) - (y = =)
ly — ="

5

MY e R

y—

P

e
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151 LP(Q) for any 1 < p < L= it follows from (4.2) and elliptic estimates that R(-.z) is
in W2r(Q) for any z € Q.1 S p < 725. From (4.1) we thus get
Nz )eWrP(Q) for 1<p< & ,2EQ,
(4.3) n—1
} N(z,-) g WrH(Q\{z}) for z€Q.
)
It is casy to verify that the function R(y, z) is differentiable with respect to z € Q. In
fact, for any fixed vector o # 0, the function R,(-,z) = a - V.R(-, z) is the solution to
: 1 Va(y) - (y — 2
. (4-4a) ~ V(1) ¥, Ra(y,2)) = —— -V, ( "’f)Jl)y g l,,)) . vEQ,
0 1
(4.4D) Wyig— Raly,2) = — a -V, ( )y V") , y € 0N,
v, “n () ly—=|"
: with the normalization
’ 1 log |y — = | :
f /R(,(y,:)(lsyzﬂ-/a-vz<T dsy ifn=2,
- 22}
. (4.5) , | _ |2 n
1 = / Y dsy ifn>3.
(n = 2)wn o)
The right hand side of (4.4a)
1 Va(y) - (y - 2)) 1 log |y — 2|
-— -V, =-——Vy(y)-V,[a -V, ——F—— n=2),
(T ) = e ) T
1 Vy(y) - (y 2)) 1 ( 1 >
- —a- -V, = v Vyla- -V, n > 3),
(BT = e S0 W Vemryr) 29
q isin (HH9(0)) | n < ¢, since both
! log |y —z| 1
! V,;———— (n=2) and V, n>3)
) EIPEEC
are in LP(Q), 1<p< _l T and are continuous on 9N (z € Q). The right hand side
of (4.4h) is continuous on 9 (= € Q). By elliptic regularity and duality it now follows
’ that
i
(4.6) Ro(-.z) € WP Q) for 1 < p < Ll,:eQ.
n—
The functions
0 Villogly—=])= (I: — ) ’[f‘ (n=2)
v — = |2
and
17
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(z—y)-a

a-V.(ly—:z""=(2-n) AL

(n>3)

xS

are in LP(§2) but not in W\ {z}). Consequently, it follows from (4.1) and (4.6) that

a V. Nz, ) e L"(Q)for1 <p<
(1.7) n—1

a-V.N(z) ¢ WEQ\{z}) for z € Q

.2 €9, and

oSS

for any vector a # 0.

Tl
&. -

Procecding once more by the method used to prove (4.6) one can show that

“¥
L 3

(1.8) DER(..z) € L"(Q) forlgp<n—7i-¥, eQ.

Differentiation of log | y — = | gives

(Dil()g‘!j"‘:|ﬂ)ﬂ: ad —2((:_!/)'&)((2‘—‘_1/)'5)

ly =z |? lz—y|*

from whiclh we conclude that, in the case n = 2,

‘r‘rf‘. s ik 4 .'.'4"..',.-";- ,4; ; ‘1 L J \-

(D? log |y —=z]a)-3 isunotin L'(Q\{z})

for any veetors « # 0,3 # 0. The same statement holds in dimension n > 3 for the
function | y — 2 |27". A combination of this with (4.1), (4.8) yields

A e

e g

(-1.9) (D3N (z,)a)-3 isnotin L'(Q\{z})

for any vectors a #0, 3 #0.
Iutroducee the function F:

(-4.10) F{pd Az b)) =D pia(z0) VN (za,y) - AVU (24) -

>
R A N e A A AL Sl I

DF({Api} ] {Az 3 ) y)
Iy
= IR DIN (2 ) AVT (20)) - Ay
(1 11) k=1

+ V() ANV N2k y) - AATU(24)
b2V N sk y) - (ADIU(20)Az)
bt T A ()Y N (2 y) - AVT ()] y € Q\{z) ]

26707 AN,

e

1

o0
R R A

e p R LA e e A A P P T
A ﬁ-ﬂ\*ﬂ’}nt’\\:‘nt\f\f\..‘\.:'l.:\:'&".-::,L"i‘?i‘)‘iﬁi‘ni‘? A
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Lesyyia 4.1, If

Z(I Api |+ 1Az DA 0, pre > 0and VU(24) £ 0,

- o T 2
{“r‘i"i"'i{q."_

1
»

SN then the function DE({Ape} M L {Az0 Y M) is not identically zero in Q\{z4} M.

st

Proof. If at least one Azy is n()t zero, then it follows from (4.9), (4.11) and (4.7) (with
p = 1) that DF is not in LY(Q\{z4}{) and thus not identically zcro; here we used the fact
that A is positive definite and VU ( ~k) # 0. If all the Azx equal zero then at least one Apy
is not cqual to zero, and DF is not in TWH(Q\{z4} 1), by (4.7); thus again DF #0. [

"
>

For the following lemma we need all the assumptions made carlier in the introduction,
in particular (1.3),(1.4) and (1.15). Let

H({p 3 = s o =60
= F({pe}. {z)) = FUpid Lze Dl ooy
0
+llz Fpd (=60) = F({oid, =000

L=(T) »

’. t "~ ol .(."..’ -
R e o e N i

r

£,

where T' is a fixed nonempty, open subset of 99.

LesMMA 4.2, There exists a positive constant 8 such that if

L

1 . . i
H({pE {505 5 (o (8 < 5 o

:-F

then R
-" l.

»
(i) I\ = K' and, after appropriate reordering, i
«\' (]
. . . . . R '\‘

(i) Tee=zi I+ e =2k | SCH{pi Y Az (o =i ), 1Sk < I 25

e : , . [
I'he constants & and C' depend on the same parameters as ég.€q and C in Theorem 1.1 X
Proof. Suppose the assertion ¥ = K is not true. Then there exist sequences :'_::.
(m) _ (m)y K (m) :::-
:_m_{k }\ (m) {k } , .._
~(n)' . ~(’")’ 1N ( ) (m) &

A _{~k W™ =A{p P } .z'
.::,

with ' # L' such that the corresponding H converges to 0 as m — oo (since K. L' < F\
My =1/ {l x| <dy/2} |, we can choose K and I’ to be independent of m). Passing ’\

to o subsequence we get

;(m) - my ! N I. ﬁ(m)_'/) and p(m)’ _’/7,-

=

Ity
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Since H approaches zero,

F(p.z)u) = lim F(pt™ 2")(y)

= lim F(p" "2 Y y) = F(p' .2 Ny), y €T,
and shilarly for %} F
50,—/ F(p,z)(y) = 001/ F(p'.z2')y). yeTl.

Thus the funetion G(y) = Flp.z)(y) — F(/_)’,;')(j/ ) 1s a solution of
V. (y(y)VG) = 01n Q\( {:k}{‘- U {:L},"")

which vanishes together with its first derivatives on I'. By uniqueness of the solution to
the Canchy problem ([3], [7]) it follows that G is identically zero. ic..

(4.12) F(/:.;):F(/_)',:')iu Q \({:k}l"U{:'k

The components of p and p' are all positive, so F(p, z) has a singularity at prm‘i%vl\' cach
of the points zg, and F(p'. ') has a singularity at precisely each of the points =i (by (4.7)).
Therefore (4.12) s a contradiction, and we conclude that &' = K'. The same argument
shows that, after reordering,

(4.13) 2 =z [+l pk—pi|=0 as H—0.

The proof of (i1) proceeds along the same lines. Assume that the assertion is not true.
ye . 4 ’ -
Fhen there exist sequences 0 p0m c=0m 5and pO) 7 (each element a N —vector) such

thiat
[{({)(m)’; m). /)(m) ;(m) :)
(1]1) N (,,,_) _(m) ! () (my’ -0
oo =" e =0 D

Sinee the denominator in (4.14) is bounded, it follows that H — 0. and thus by (4.13)

I

(l(m) — Z (| :i.”') _ 32.‘") ! + | /)(knx) _ l)(km) I) 0 ‘
1

after reordering. Passing to a subsequence we may assumne that

i 20" = iz =
lim/_)('”) = limQ('”) T=p
Jtm)y o tm) -
lin ;‘T”;‘— = A
him Z—W = ’_\/_)k
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note that
IN

oAz [+ ap|) =

1

From (1.14) and the definition of H it follows that

IDE( A/)k}f‘-{'—\‘:k}f")

L~>~(1)

+IJ—DF{A/M} Az sy = 0.,

where DF denotes the Frechet derivative of Foat (p.z). However, DF({Apr}. {2 })(y)

15 clearly a solution of the homogeneous equation
V. (()VUDF)) =0 in Q\{z}}"
(sce (1.11)), and by nnigqueness of the solution to the Cauchy problem
DFEU{Am M AQA5 I )y) =0 in Q\ (=1}

This s o contradietion to Lemma 4.1, [

Proof of Theorem 1101 |fu, — uil|~ 1y < éye™ then the representation formula in
Letma 3.3 pives

IEpa A ) = FUA A5 M M=oy < €7 MJue = o=y + 7€)
< &y +77(€) .

i Ju, ou' ]
and since 0— = 3 on I' it also follows that
1’ 14

J . . ) o ]
H()T F({/’k}{\'{:k}{\)— EF{{/)"H‘ ,{:k}{‘ )Hl."(l‘) < 1j(€):

here yte) denotes the maximum of 2| y(e.y {pi} {zx D) |+ | Vynlecy {p}- {zx ]V ) (from
Lemma 3.3) over yel' {pi} < [dy. Dy) and {2} € Q, subject to (1.3). In terms of H.

1{({/%},’\.. {:k}f\.i {/)'A.}{"'. {:L}f"') < o+ 20(€) <6

if we take &g = 8/2 and € < €y so that 25(e) < 8/2. Applying Lemma 4.2 we conclude that
N = L' and

|2k = skl Tpw = pi |[S CH < Cemflu = uill~ry + nte) |

where yle) = 2C5(e) =+ 0 as e — 0.
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B Revark 4.1 If 0 = 2 and if U |ag has only finitely many relative extrema then ;
i there are at most finitely many points in Q where VU can vanish (cf. [1]). If the points v
e o are restricted to stay away from these eritical points, then the non-degeneraey :
E condition {1.15) may be dropped.
<
Renmann 1.2 In the special case of a constant reference conductivity v and n = 2, :’
the results i this section have some similarity to the results about the location of poles >3
for meromorphic functions, found in [16]. If T is all of 0 then Lemma 4.2 Sllows diveetly .
from the representation formula in Section 3 and the analysis in {16]. On the other hand N
4 i 1 as a0 proper subset of 3Q then this analyvsis would give a Holder estimate and not the . i
[ stronger Lipschitz estimmate of Lemma 4.2 ::_
)
Resark 4.3, One could raise the question of “best possible™ choice for T or 3>, or
) what are the shapes B that are the easiest or most difficult to find. This analysis would A
be somewhat in the spirit of [10]. although the results would differ due to the different .
(»))j('(‘ti\'v.ﬁ. ;
) '
%5. Small inhomogeneities with zero conductivity. The results of Sections 1-4 ~
can be extended to the case where the inhomogeneities have zero conductivity, that is, to o
" the case where 1 is replaced by «?. For n = 2 this follows from the fact that problems bty
! (1.5) and (1.6) are very closely related by duality. The flux o, = 4Vu? in Q\w, . 0, =0 e
in w, minimnzes the functional .
X 1 -1 2 g N
{ 5—/7 | o |° da .
f T Q a
’ subject to Voo =01 Q.o -1 = ¢ on 0N and 0 = 0 in w,. Assuming that Q is simply Y
connccted we et that )
’ Te = (*-—d— ! ——a-— Ue)
{ ) dry, “0ry 77 o
p . L v
where ¢, is the minimizer of e
| %/7_1|V('|2 da ,~
Q :.
subjeet to Ve = 0 in w, and v = ¥ on 9N (¥ is determined as a clockwise integral ,;'“
j of +1). The Neumann problem (1.6) with inhomogeneities of conductivity 0 is therefore l-i‘
{ cquivadent to a Dirichlet problem with infinitely conducting inhomogeneities and reference ;‘
* conductivity 7' Sinee the method of §51 — 4 applies equally well to the case of the z
Dirichlet problem, we coneliude that Theorem 1.1 extends to problem (1.6). 1.e., to v, = ul. o
Consider now the case 1 > 3. The resalts of Section 2 can easily be extended to ':-',.
w, !’ To derive a representation formula for v, = u?. we start with "

oN . ;
(5.1) w (y) = /711,5; (/.~'+‘/1,‘..\(/.\' E.:
e ) N

[§%]
1§
}I'.
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(ef. (3.27)) where 1 is the outward normal relative to w,.. Suppose there is only one
inhomogeneity, with = = 0.p = 1. We assume that B is star-shaped with respect to the
origin aud

or
o

{H.2)

# 0 along OB (r=lyl)

Let W (y) and ¥ (y) denote the unique solutions to

|
(3T (g) = 0in {| y |< SND.

(5.3) 00\?/': = —r;on 00,

wi(y) = 0on {1y =)

:lll(l
A¥; =0 in R"\ B,
- v,
(5.4) Al = —v;on 0B,
dv

P(y) > 0as |y|— o0,

where v is thie outward normal relative to B. Notice that the function m(y) = m(r) =

2-n

rTT v o=y | . satisfies

dm
Ov

<0 on JdB (by (5.2)),

and therefore Cin(y) can be used as a barrier for the ¥§. We conclude that ¥{ — ¥, in
Chinany set {]y [< RI\DB as e — 0.

C'onsider the funetion

- U
1w, = L= S o)

From cuergy estimates it follows, as in section 3, that

| <C |y |7
9 2-n 2—n (1

=C — |yl *i<o JylT TP on |yl=—,
d? €

provided ¢ « r/”b/('. 0 < # < 1/2. At the same time

o,
d

— 0 unformly on 98, as € — 0.
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Therefore, by comparison, ’
'

»
o P d ]
W lgelyl ™ T i {lyl S SN\B ry

for e sutficicutly small. Sinee & 1s arbitrary, we conclude that o
(5.0) ll,(.l‘):U(.I')—{—(ZU,I.(U)\I/,(;E)+€I7(6..E). red(e3) ' L

where (e, ) — 0 as e — 0, uniformly in » € d(eB) . Inserting this into (3.1) we get

’).\' £ :\
) == / ‘7(.1')U(.r)(——(—-ﬂd.\»r >

OI/I X
a{e I3) \

) r . ON(x. i} ,
P / Zq(.r)o,.,(o)w% ) —0(1’—”—) dsy + €"nley) + /L'(r)N(.z',y)(Is, ‘

ield) aN ?‘

(D.6)

R 2%

-
[}

where yle y) — 0 uniformly in gy, y € Q, |y |> d > 0 ;v is the outward normal relative to
3.

; 1] ;.l :-l': '{A.

The first integral on the right-hand side can be written as

0

Vy

';;.7" L

I =e" 7! /“,(F:)U(FZ)( MN(ez,y)ds,

an

=¢€" ZU;-.-(O)/”I((?:):,'( 9 J\')(E:,y) (IS: + O(f"+l) ’

01/[
an

TS

v’y

sinee U(ez) = U(0) 4+ 3 e,U,,(0) + O(e?) and ony

0 -~
/‘f(‘:) N(ez,y)ds. =0. =
o, : q
an )
Thus '“:

Iy = ¢ Za(())c:-.(m.\u-,(().w/:"'ﬂs: +0(e")

an

AR

where 1, s the ) — th component of the outward normal v

The second integral on the right-hand side of (5.6) can be written as

l. l' ll".\ .
RIS TR

Ir=e"> 40U, (0)N, (0.4) / U,(2)r, ds, + O(e"H)
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In summary

ve(y) = "y (0)VN(0,y) - AVL(0)

+ /¢‘(.1’);\'(.1‘,y) dsy + €"nle,y)
By

with 1 = («;;) given by

{(H.7) iy = /l/,(:]' + \I’]‘(:))(IS; ,

on
1 1s the outward normal relative to B, and n(e,y) — 0 as € — 0, uniformly with respect
yy|>d >0

Similarly, for the case of I\ rescaled inhomogeneities, we get the representation formula
1N

w(y) =€ Y ppr(zi)VN(zk,y) - AVU(2¢)
k=1

+ [ H@N Gy dse + el {md ()
o
the only difference between this and (3.30) is the sign in front of the first term and the
matrix («a;;), which here 1s given by (5.7).
From the defimtion of ¥, (5.4), and integration by parts (using Lemma 3.1) it follows
that

Sastes =Bl + [ IVEP a

R™\B
with ¥ = 5 &;0 1 consequently A is symmetric positive definite. In general A cannot be
computed explicitls ' verin case B is the unit ball
1 z
Vi(z) = —

T—n|z|®
and we compute that
) w
”i;zé,j—-n— W, = Imeas {|:|=1} .

(n—-1)"

Our main result, Theorem 1.1., now immediately carries over to the case of u?.
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